
Module 3

OOP Concepts

• Object Oriented is a popular design approach for

analyzing and designing an application

• Most of the languages like C++, Java, .net are use object

oriented design concept

• Object-oriented concepts are used in the design methods

such as classes, objects, polymorphism, encapsulation,

inheritance, dynamic binding, information hiding,

interface, constructor, destructor

• The main advantage of object oriented design is that improving the

software development and maintainability

• Another advantage is that faster and low cost development, and

creates a high quality software

• The disadvantage of the object-oriented design is that larger program

size and it is not suitable for all types of program

• The different terms related to object design are:

 Class :

 A class is a collection of method and variables

 It is a blueprint that defines the data and behavior of a type

 Let’s take HumanBeing as a class

 A class is a blueprint for any functional entity which defines its

properties and its functions

 Like HumanBeing, having body parts, performing various actions

 Inheritance :

 Inheritance is a feature of object-oriented programming that allows code

reusability when a class includes property of another class

 Considering HumanBeing a class, which has properties like hands, legs,

eyes, mouth, etc, and functions like walk, talk, eat, see, etc.

 Man and Woman are also classes, but most of the properties and

functions are included in HumanBeing

 Hence, they can inherit everything from class HumanBeing using the

concept of Inheritance

 Objects :

 My name is Akhil, and I am an instance/object of class Man

 Abstraction :

 Abstraction means, showcasing only the required things to the

outside world while hiding the details

 Continuing our example, HumanBeing’s can talk, walk, hear, eat, but

the details of the muscles mechanism and their connections to the

brain are hidden from the outside world

 Encapsulation :

 Encapsulation means that we want to hide unnecessary details from

the user

 For example, when we call from our mobile phone, we select the

number and press call button

 But the entire process of calling or what happens from the moment we

press or touch the call button to the moment we start having a phone

conversation is hidden from us

 Polymorphism :

 Polymorphism is a feature of object-oriented programming

languages that allows a specific routine to use variables of

different types at different times

 Design classes

• A set of design classes refined the analysis class by providing design

details

• There are five different types of design classes and each type

represents the layer of the design architecture these are as follows:

1) User interface classes :

 These classes are designed for Human Computer Interaction(HCI)

2) Business domain classes :

 These classes are required to implement the elements of the

business domain

3) Process classes :

 Which is needed to completely manage the business domain

class

4) Persistence classes :

 It shows data stores that will persist behind the execution of the

software

5) System Classes :

 System classes implement software management and control

functions

 Design class characteristics

 Complete and sufficient

 Primitiveness : Fulfill one service for the class

 High cohesion : A cohesion design class has a small and focused set

of responsibilities

 Low-coupling : The minimum acceptable of collaboration must be

kept in the model. If a design model is highly coupled then the

system is difficult to implement, to test and to maintain over time

DESIGN PATTERNS

 Basic concepts of Design patterns

 How to select a design pattern

 Creational patterns

 Structural patterns

 Behavioral patterns

 Concept of Anti-patterns

Index

 In software engineering, a design pattern is a general repeatable

solution to a commonly occurring problem in software design

 A design pattern isn’t a finished design

 It is a description or template for how to solve a problem that can be

used in many different situations

 Basic concepts of Design patterns

 Each design pattern systematically names, explains, and evaluates an

important and recurring design in object-oriented systems

 Our goal is to capture design experience in a form that people can use

effectively

 To this end we have documented some of the most important design

patterns and present them as a catalog

 In general, a pattern has four essential elements:

1) Pattern name

2) Problem

3) Solution

4) Consequences

 Pattern name

 Use to describe a design problem, its solutions, and consequences

in a word or two

 Naming a pattern immediately increases our design vocabulary

 It makes it easier to think about designs and communicate to others

 Finding good names has been one of the hardest part

 Problem

 Describes when to apply the pattern

 It explains the problem and its context

 Solution

 The solution doesn't describe a particular concrete design or

implementation

 Because a pattern is like a template that can be applied in many

different situations

 Describes the elements that make up the design, their

relationships, responsibilities, and collaborations

 Consequences

 They are the results and trade-offs of applying the pattern

 Design patterns can speed up the development process by providing

tested, proven development paradigms

 Reusing design patterns helps to prevent subtle issues that can cause

major problems

 Improves code readability for coders and architects familiar with the

patterns

 Often, people only understand how to apply certain software design

techniques to certain problems

 These techniques are difficult to apply to a broader range of problems

 Design patterns provide general solutions, documented in a format

that doesn't require specifics tied to a particular problem

 In addition, patterns allow developers to communicate using well-

known, well understood names for software interactions

 Common design patterns can be improved over time

 With more than 20 design patterns in the catalog to choose from, it

might be hard to find the one that addresses a particular design

problem, especially if the catalog is new and unfamiliar to you

 Here are several different approaches to finding the design pattern

that's right for your problem:

 How to select a design pattern

 Consider how design patterns solve design problems

 Find appropriate objects, determine object granularity, specify

object interfaces, and several other ways in which design patterns

solve design problems

 Scan Intent sections

 Read through each pattern's intent to find one or more that sound

relevant to your problem

 Study how patterns interrelate

 Studying these relationships between design patterns graphically

can help direct you to the right pattern or group of patterns

 Study patterns of like purpose

 Study the similarities and differences between creational patterns,

structural patterns and behavioral patterns

 Examine a cause of redesign

 Look at the patterns that help you avoid the causes of redesign

 Eg : Algorithmic dependencies

 Algorithms are often extended, optimized, and replaced during development and

reuse

 Objects that depend on an algorithm will have to change when the algorithm

changes

 Therefore algorithms that are likely to change should be isolated

 Design patterns: Builder, Iterator, Strategy, Template, Method, Visitor

Consider what should be variable in your design

 Consider what you want to be able to change without redesign

 The focus here is on encapsulating the concept that varies

 Design aspect(s) (eg : steps of an algorithm) of design patterns can

vary independently, thereby letting you change them without

redesign

 There are many design patterns, we need a way to organize them

 Organizing the Catalog

 We classify design patterns by two criteria (Table1.1)

 The first criterion, called purpose, reflects what a pattern does

 Patterns can have either creational, structural, or behavioral

purpose

 Creational patterns concern the process of object creation

 Structural patterns deal with the composition of classes or objects

 Behavioral patterns characterize the ways in which classes or objects

interact and distribute responsibility

 The second criterion, called scope, specifies whether the pattern

applies primarily to classes or to objects

 Class patterns deal with relationships between classes and their

subclasses

 These relationships are established through inheritance, so they are

static (fixed at compile-time)

 Object patterns deal with object relationships, which can be changed

at run-time and are more dynamic

 Only patterns labeled "class patterns" are those that focus on class

relationships

 Note that most patterns are in the Object scope

 Creational class patterns defer some part of object creation to

subclasses, while Creational object patterns defer it to another object

 The Structural class patterns use inheritance to compose classes, while

the Structural object patterns describe ways to assemble objects

 The Behavioral class patterns use inheritance to describe algorithms and

flow of control, whereas the Behavioral object patterns describe how a

group of objects cooperate to perform a task that no single object can

carry out alone

Creational
Patterns

 Creational design patterns abstract the instantiation process

 They help make a system independent of how its objects are created,

composed, and represented

 This pattern can be further divided into class-creation patterns and

object-creational patterns

 While class-creation patterns use inheritance effectively in the

instantiation process

 Object-creation patterns use delegation effectively to get the job done

 Object Creational

 Abstract Factory

 Builder

 Object Creational

 Class Creational

 Factory Method

 Prototype

 Object Creational

 Singleton

 Object Creational

Structural
Patterns

 These design patterns are all about Class and Object composition

 Structural class patterns use inheritance to compose interfaces

 Structural object-patterns define ways to compose objects to obtain

new functionality

 Class, Object Structural

 Adapter

 Bridge

 Object Structural

 Composite

 Object Structural

 Decorator

 Object Structural

 Facade

 Object Structural

 Flyweight

 Object Structural

 Proxy

 Object Structural

Behavioral
Patterns

 Behavioral patterns are concerned with algorithms and the assignment of

responsibilities between objects

 Behavioral patterns describe not just patterns of objects or classesbut also

the patterns of communication between them

 Behavioral class patterns use inheritance to distribute behavior between

classes

 Behavioral object patterns use object composition rather than inheritance

 Object Behavioral

 Chain of Responsibility

 Command

 Object Behavioral

 Interpreter

 Class Behavioral

 Iterator

 Object Behavioral

 Mediator

 Object Behavioral

 Memento

 Object Behavioral

 Observer

 Object Behavioral

 State

 Object Behavioral

 Strategy

 Object Behavioral

 Template Method

 Class Behavioral

 Visitor

 Object Behavioral

Concept of
Anti-patterns

 AntiPatterns, like their design pattern counterparts, define an industry

vocabulary for the common defective processes and implementations

within organizations

 A higher-level vocabulary simplifies communication between software

practitioners and enables concise description of higher-level concepts

 Describes a commonly occurring solution to a problem that generates

decidedly negative consequences

 The AntiPattern may be the result of a manager or developer not

knowing any better, not having sufficient knowledge or experience in

solving a particular type of problem, or having applied a perfectly good

pattern in the wrong context

 Recognizing recurring problems in the software industry

 Provide a detailed remedy for the most common predicaments

 Highlight the most common problems that face the software industry and

provide the tools to enable you to recognize these problems and to

determine their underlying causes

 Implementing productive solutions

 Improve the developing of applications, the designing of software systems

 Effective management of software projects

 A key goal of development AntiPatterns is to describe useful forms of

software refactoring

 Software refactoring is a form of code modification, used to improve the

software structure in support of subsequent extension and long-term

maintenance

 Software Development AntiPatterns

 Architecture AntiPatterns focus on the system-level and enterprise-

level structure of applications and components

 Software Architecture AntiPatterns

 In the modern engineering profession, more than half of the job

involves human communication and resolving people issues

 The management AntiPatterns identify some of the key scenarios in

which these issues are destructive to software processes

 Project Management AntiPatterns

