
Module 3

OOP Concepts

• Object Oriented is a popular design approach for

analyzing and designing an application

• Most of the languages like C++, Java, .net are use object

oriented design concept

• Object-oriented concepts are used in the design methods

such as classes, objects, polymorphism, encapsulation,

inheritance, dynamic binding, information hiding,

interface, constructor, destructor

• The main advantage of object oriented design is that improving the

software development and maintainability

• Another advantage is that faster and low cost development, and

creates a high quality software

• The disadvantage of the object-oriented design is that larger program

size and it is not suitable for all types of program

• The different terms related to object design are:

 Class :

 A class is a collection of method and variables

 It is a blueprint that defines the data and behavior of a type

 Let’s take HumanBeing as a class

 A class is a blueprint for any functional entity which defines its

properties and its functions

 Like HumanBeing, having body parts, performing various actions

 Inheritance :

 Inheritance is a feature of object-oriented programming that allows code

reusability when a class includes property of another class

 Considering HumanBeing a class, which has properties like hands, legs,

eyes, mouth, etc, and functions like walk, talk, eat, see, etc.

 Man and Woman are also classes, but most of the properties and

functions are included in HumanBeing

 Hence, they can inherit everything from class HumanBeing using the

concept of Inheritance

 Objects :

 My name is Akhil, and I am an instance/object of class Man

 Abstraction :

 Abstraction means, showcasing only the required things to the

outside world while hiding the details

 Continuing our example, HumanBeing’s can talk, walk, hear, eat, but

the details of the muscles mechanism and their connections to the

brain are hidden from the outside world

 Encapsulation :

 Encapsulation means that we want to hide unnecessary details from

the user

 For example, when we call from our mobile phone, we select the

number and press call button

 But the entire process of calling or what happens from the moment we

press or touch the call button to the moment we start having a phone

conversation is hidden from us

 Polymorphism :

 Polymorphism is a feature of object-oriented programming

languages that allows a specific routine to use variables of

different types at different times

 Design classes

• A set of design classes refined the analysis class by providing design

details

• There are five different types of design classes and each type

represents the layer of the design architecture these are as follows:

1) User interface classes :

 These classes are designed for Human Computer Interaction(HCI)

2) Business domain classes :

 These classes are required to implement the elements of the

business domain

3) Process classes :

 Which is needed to completely manage the business domain

class

4) Persistence classes :

 It shows data stores that will persist behind the execution of the

software

5) System Classes :

 System classes implement software management and control

functions

 Design class characteristics

 Complete and sufficient

 Primitiveness : Fulfill one service for the class

 High cohesion : A cohesion design class has a small and focused set

of responsibilities

 Low-coupling : The minimum acceptable of collaboration must be

kept in the model. If a design model is highly coupled then the

system is difficult to implement, to test and to maintain over time

DESIGN PATTERNS

 Basic concepts of Design patterns

 How to select a design pattern

 Creational patterns

 Structural patterns

 Behavioral patterns

 Concept of Anti-patterns

Index

 In software engineering, a design pattern is a general repeatable

solution to a commonly occurring problem in software design

 A design pattern isn’t a finished design

 It is a description or template for how to solve a problem that can be

used in many different situations

 Basic concepts of Design patterns

 Each design pattern systematically names, explains, and evaluates an

important and recurring design in object-oriented systems

 Our goal is to capture design experience in a form that people can use

effectively

 To this end we have documented some of the most important design

patterns and present them as a catalog

 In general, a pattern has four essential elements:

1) Pattern name

2) Problem

3) Solution

4) Consequences

 Pattern name

 Use to describe a design problem, its solutions, and consequences

in a word or two

 Naming a pattern immediately increases our design vocabulary

 It makes it easier to think about designs and communicate to others

 Finding good names has been one of the hardest part

 Problem

 Describes when to apply the pattern

 It explains the problem and its context

 Solution

 The solution doesn't describe a particular concrete design or

implementation

 Because a pattern is like a template that can be applied in many

different situations

 Describes the elements that make up the design, their

relationships, responsibilities, and collaborations

 Consequences

 They are the results and trade-offs of applying the pattern

 Design patterns can speed up the development process by providing

tested, proven development paradigms

 Reusing design patterns helps to prevent subtle issues that can cause

major problems

 Improves code readability for coders and architects familiar with the

patterns

 Often, people only understand how to apply certain software design

techniques to certain problems

 These techniques are difficult to apply to a broader range of problems

 Design patterns provide general solutions, documented in a format

that doesn't require specifics tied to a particular problem

 In addition, patterns allow developers to communicate using well-

known, well understood names for software interactions

 Common design patterns can be improved over time

 With more than 20 design patterns in the catalog to choose from, it

might be hard to find the one that addresses a particular design

problem, especially if the catalog is new and unfamiliar to you

 Here are several different approaches to finding the design pattern

that's right for your problem:

 How to select a design pattern

 Consider how design patterns solve design problems

 Find appropriate objects, determine object granularity, specify

object interfaces, and several other ways in which design patterns

solve design problems

 Scan Intent sections

 Read through each pattern's intent to find one or more that sound

relevant to your problem

 Study how patterns interrelate

 Studying these relationships between design patterns graphically

can help direct you to the right pattern or group of patterns

 Study patterns of like purpose

 Study the similarities and differences between creational patterns,

structural patterns and behavioral patterns

 Examine a cause of redesign

 Look at the patterns that help you avoid the causes of redesign

 Eg : Algorithmic dependencies

 Algorithms are often extended, optimized, and replaced during development and

reuse

 Objects that depend on an algorithm will have to change when the algorithm

changes

 Therefore algorithms that are likely to change should be isolated

 Design patterns: Builder, Iterator, Strategy, Template, Method, Visitor

Consider what should be variable in your design

 Consider what you want to be able to change without redesign

 The focus here is on encapsulating the concept that varies

 Design aspect(s) (eg : steps of an algorithm) of design patterns can

vary independently, thereby letting you change them without

redesign

 There are many design patterns, we need a way to organize them

 Organizing the Catalog

 We classify design patterns by two criteria (Table1.1)

 The first criterion, called purpose, reflects what a pattern does

 Patterns can have either creational, structural, or behavioral

purpose

 Creational patterns concern the process of object creation

 Structural patterns deal with the composition of classes or objects

 Behavioral patterns characterize the ways in which classes or objects

interact and distribute responsibility

 The second criterion, called scope, specifies whether the pattern

applies primarily to classes or to objects

 Class patterns deal with relationships between classes and their

subclasses

 These relationships are established through inheritance, so they are

static (fixed at compile-time)

 Object patterns deal with object relationships, which can be changed

at run-time and are more dynamic

 Only patterns labeled "class patterns" are those that focus on class

relationships

 Note that most patterns are in the Object scope

 Creational class patterns defer some part of object creation to

subclasses, while Creational object patterns defer it to another object

 The Structural class patterns use inheritance to compose classes, while

the Structural object patterns describe ways to assemble objects

 The Behavioral class patterns use inheritance to describe algorithms and

flow of control, whereas the Behavioral object patterns describe how a

group of objects cooperate to perform a task that no single object can

carry out alone

Creational
Patterns

 Creational design patterns abstract the instantiation process

 They help make a system independent of how its objects are created,

composed, and represented

 This pattern can be further divided into class-creation patterns and

object-creational patterns

 While class-creation patterns use inheritance effectively in the

instantiation process

 Object-creation patterns use delegation effectively to get the job done

 Object Creational

 Abstract Factory

 Builder

 Object Creational

 Class Creational

 Factory Method

 Prototype

 Object Creational

 Singleton

 Object Creational

Structural
Patterns

 These design patterns are all about Class and Object composition

 Structural class patterns use inheritance to compose interfaces

 Structural object-patterns define ways to compose objects to obtain

new functionality

 Class, Object Structural

 Adapter

 Bridge

 Object Structural

 Composite

 Object Structural

 Decorator

 Object Structural

 Facade

 Object Structural

 Flyweight

 Object Structural

 Proxy

 Object Structural

Behavioral
Patterns

 Behavioral patterns are concerned with algorithms and the assignment of

responsibilities between objects

 Behavioral patterns describe not just patterns of objects or classesbut also

the patterns of communication between them

 Behavioral class patterns use inheritance to distribute behavior between

classes

 Behavioral object patterns use object composition rather than inheritance

 Object Behavioral

 Chain of Responsibility

 Command

 Object Behavioral

 Interpreter

 Class Behavioral

 Iterator

 Object Behavioral

 Mediator

 Object Behavioral

 Memento

 Object Behavioral

 Observer

 Object Behavioral

 State

 Object Behavioral

 Strategy

 Object Behavioral

 Template Method

 Class Behavioral

 Visitor

 Object Behavioral

Concept of
Anti-patterns

 AntiPatterns, like their design pattern counterparts, define an industry

vocabulary for the common defective processes and implementations

within organizations

 A higher-level vocabulary simplifies communication between software

practitioners and enables concise description of higher-level concepts

 Describes a commonly occurring solution to a problem that generates

decidedly negative consequences

 The AntiPattern may be the result of a manager or developer not

knowing any better, not having sufficient knowledge or experience in

solving a particular type of problem, or having applied a perfectly good

pattern in the wrong context

 Recognizing recurring problems in the software industry

 Provide a detailed remedy for the most common predicaments

 Highlight the most common problems that face the software industry and

provide the tools to enable you to recognize these problems and to

determine their underlying causes

 Implementing productive solutions

 Improve the developing of applications, the designing of software systems

 Effective management of software projects

 A key goal of development AntiPatterns is to describe useful forms of

software refactoring

 Software refactoring is a form of code modification, used to improve the

software structure in support of subsequent extension and long-term

maintenance

 Software Development AntiPatterns

 Architecture AntiPatterns focus on the system-level and enterprise-

level structure of applications and components

 Software Architecture AntiPatterns

 In the modern engineering profession, more than half of the job

involves human communication and resolving people issues

 The management AntiPatterns identify some of the key scenarios in

which these issues are destructive to software processes

 Project Management AntiPatterns

