Module 3
OOP Concepts

* Object Oriented 1s a popular design approach for

analyzing and designing an application

* Most of the languages like C++, Java, .net are use object

oriented design concept

* Object-oriented concepts are used in the design methods
such as classes, objects, polymorphism, encapsulation,

inheritance, dynamic binding, information hiding,

11rtarfarmra ~Aanrncfriicntar dactrmiintnAte

The main advantage of object oriented design is that improving the

software development and maintainability

Another advantage is that faster and low cost development, and

creates a high quality software

The disadvantage of the object-oriented design is that larger program

size and it 1s not suitable for all types of program

* The different terms related to object design are:

Object
Oriented
Programming
Concepts

Abstraction ' Polymorphism

-

Inheritance Encapsulation

% Class :
> A class is a collection of method and variables
> It is a blueprint that defines the data and behavior of a type
» Let’s take HumanBeing as a class

> A class is a blueprint for any functional entity which defines its

properties and its functions

» Like HumanBeing, having body parts, performing various actions

¢ Inheritance :

» Inheritance is a feature of object-oriented programming that allows code

reusability when a class includes property of another class

» Considering HumanBeing a class, which has properties like hands, legs,

eyes, mouth, etc, and functions like walk, talk, eat, see, etc.

» Man and Woman are also classes, but most of the properties and

functions are included in HumanBeing

» Hence, they can inherit everything from class HumanBeing using the

concept of Inheritance

Ennnnn
Electronics Items
ARE

|)))

Phones Sound Systems

T e

=\

Q
(a2

Mobile Phones Cord Phones Earplugs Stereos

+draw () vord

Circle

Triangle

+drawi); void

Rectangle

+draw(); void

+draw). void

“* Objects :
» My name is Akhil, and I am an instance/object of class Man
“* Abstraction :

» Abstraction means, showcasing only the required things to the

outside world while hiding the details

» Continuing our example, HumanBeing’s can talk, walk, hear, eat, but
the details of the muscles mechanism and their connections to the

brain are hidden from the outside world

“* Encapsulation :
» Encapsulation means that we want to hide unnecessary details from
the user
» For example, when we call from our mobile phone, we select the

number and press call button

» But the entire process of calling or what happens from the moment we
press or touch the call button to the moment we start having a phone

conversation 1s hidden from us

Abstraction

Encapsulation

1. Abstraction solves the problem in the

design level.

1. Encapsulation solves the problem in the

implementation level.

2. Abstraction is used for hiding the

unwanted data and giving relevant data.

2. Encapsulation means hiding the code and
data into a2 single unit to protect the data

from outside world.

3. Abstraction lets you focus on what the

object does instead of how it does it

3. Encapsulation means hiding the internal
details or mechanics of how an object does

something.

4, Abstraction- Outer layout, used in terms
of design.

For Example:-

Outer Look of a Mobile Phone, like it has a
display screen and keypad buttons to dial a

number.

4, Encapsulation- Inner layout, usad in
terms of implementation.

For Example:- Inner Implementation datail of
a Mobile Phone, how keypad button and
Display Screen are connect with each other

using circuits.

“* Polymorphism :
» Polymorphism is a feature of object-oriented programming

languages that allows a specific routine to use variables of

different types at different times

Example of Polymorphism

In Java
Shape
areal)
Circle Triangle Rectangle

area (circle) area (triangle) area (rectangle)

“* Design classes

* A set of design classes refined the analysis class by providing design

details

* There are five different types of design classes and each type

represents the layer of the design architecture these are as follows:
1) User interface classes :
» These classes are designed for Human Computer Interaction(HCI)
2) Business domain classes :

» These classes are required to implement the elements of the

business domain

3) Process classes :

» Which is needed to completely manage the business domain

class
4) Persistence classes :

» It shows data stores that will persist behind the execution of the

software
5) System Classes :

> System classes implement software management and control

functions

%* Design class characteristics

d Complete and sufficient
J Primitiveness : Fulfill one service for the class

J High cohesion : A cohesion design class has a small and focused set

of responsibilities

J Low-coupling : The minimum acceptable of collaboration must be
kept in the model. If a design model is highly coupled then the

system 1s difficult to implement, to test and to maintain over time

DESIGN PATTERNS

Index

* Basic concepts of Design patterns
“ How to select a design pattern

“ Creational patterns

“ Structural patterns

“ Behavioral patterns

* Concept of Anti-patterns

“* Basic concepts of Design patterns

> In software engineering, a design patternis a general repeatable

solution to a commonly occurring problem in software design
> A design pattern isn’t a finished design

> It 1s a description or template for how to solve a problem that can be

used 1n many different situations

> Each design pattern systematically names, explains, and evaluates an

important and recurring design in object-oriented systems

> Our goal 1s to capture design experience in a form that people can use

effectively

> To this end we have documented some of the most important design

patterns and present them as a catalog

> In general, a pattern has four essential elements:
1) Pattern name
2) Problem
3) Solution
4) Consequences
J Pattern name

= Use to describe a design problem, its solutions, and consequences

in a word or two
* Naming a pattern immediately increases our design vocabulary
* It makes it easier to think about designs and communicate to others

- JFinding good names has been one of the hardest part

J Problem

" Describes when to apply the pattern

" It explains the problem and its context
4 Solution

* The solution doesn't describe a particular concrete design or

implementation

" Because a pattern 1s like a template that can be applied in many

different situations

" Describes the elements that make up the design, their

relationships, responsibilities, and collaborations
d Consequences

= They are the results and trade-offs of applying the pattern

> Design patterns can speed up the development process by providing

tested, proven development paradigms

> Reusing design patterns helps to prevent subtle issues that can cause

major problems

> Improves code readability for coders and architects familiar with the

patterns

Often, people only understand how to apply certain software design

techniques to certain problems
These techniques are difficult to apply to a broader range of problems

Design patterns provide general solutions, documented in a format

that doesn't require specifics tied to a particular problem

In addition, patterns allow developers to communicate using well-

known, well understood names for software interactions

Common design patterns can be improved over time

“* How to select a design pattern

> With more than 20 design patterns in the catalog to choose from, it
might be hard to find the one that addresses a particular design

problem, especially if the catalog is new and unfamiliar to you

> Here are several different approaches to finding the design pattern

that's right for your problem:

d Consider how design patterns solve design problems

" Find appropriate objects, determine object granularity, specify
object interfaces, and several other ways in which design patterns

solve design problems
4J Scan Intent sections

" Read through each pattern's intent to find one or more that sound

relevant to your problem
J Study how patterns interrelate

= Studying these relationships between design patterns graphically

can help direct you to the right pattern or group of patterns

J Study patterns of like purpose

* Study the similarities and differences between creational patterns,

structural patterns and behavioral patterns

J Examine a cause of redesign

" Look at the patterns that help you avoid the causes of redesign

"Eg:

Algorithmic dependencies
Algorithms are often extended, optimized, and replaced during development and
reuse

Objects that depend on an algorithm will have to change when the algorithm

changes
Therefore algorithms that are likely to change should be isolated

Design patterns: Builder, Iterator, Strategy, Template, Method, Visitor

JConsider what should be variable in your design
" Consider what you want to be able to change without redesign
" The focus here is on encapsulating the concept that varies
" Design aspect(s) (eg : steps of an algorithm) of design patterns can

vary independently, thereby letting you change them without

redesign

“* Organizing the Catalog

> There are many design patterns, we need a way to organize them

Purpose
Creational Structural Behavioral
Scope | Class | Factory Method (107) | Adapter (class) (139) | Interpreter (243)
Template Method (325)
Object | Abstract Factery (87) | Adapter (object) (139) | Chain of Responsibility (223)
Builder (97) Bridge (151) Command (233)
Prototype (117) Composite (163) Iterator (257)
Singleton (127) Decorator (175) Mediator (273)
Facade (185) Memento (283)
Flyweight (195) Observer (293)
Proxy (207) State (305)
Strategy (315)
Visitor (331)

Table 1.1: Design pattern space

We classify design patterns by two criteria (Tablel. 1)

The first criterion, called purpose, reflects what a pattern does
Patterns can have either creational, structural, or behavioral
purpose

Creational patterns concern the process of object creation

Structural patterns deal with the composition of classes or objects

Behavioral patterns characterize the ways in which classes or objects

interact and distribute responsibility

> The second criterion, called scope, specifies whether the pattern

applies primarily to classes or to objects

> Class patterns deal with relationships between classes and their

subclasses

> These relationships are established through inheritance, so they are

static (fixed at compile-time)

> Object patterns deal with object relationships, which can be changed

at run-time and are more dynamic

> Only patterns labeled "class patterns" are those that focus on class

relationships

=Z_Note that most patterns are in the Object scope

> Creational class patterns defer some part of object creation to

subclasses, while Creational object patterns defer it to another object

> The Structural class patterns use inheritance to compose classes, while

the Structural object patterns describe ways to assemble objects

> The Behavioral class patterns use inheritance to describe algorithms and
flow of control, whereas the Behavioral object patterns describe how a
group of objects cooperate to perform a task that no single object can

carry out alone

Creational
Patterns

Creational design patterns abstract the instantiation process

They help make a system independent of how its objects are created,

composed, and represented

This pattern can be further divided into class-creation patterns and

object-creational patterns

While class-creation patterns use inheritance effectively in the

instantiation process

Object-creation patterns use delegation effectively to get the job done

Creational

Class | Factory Method
Object | Abstract Factory
Builder

Prototype

Singleton

“* Abstract Factory

> Object Creational

Intent

Provide an interface for creating families of related or dependent objects without
specifying their concrete classes.

Also Known As
Kit

Motivation

Consider a user interface toolkit that supports multiple look-and-feel standards,
such as Motif and Presentation Manager. Different look-and-feels define different
appearances and behaviors for user interface “widgets” like scroll bars, windows,
and buttons. To be portable across look-and-feel standards, an application should
not hard-code its widgets for a particular look and feel. Instantiating look-and-
feel-specific classes of widgets throughout the application makes it hard to change
the look and feel later.

We can solve this problem by defining an abstract WidgetFactory class that de-
clares an interface for creating each basic kind of widget. There’s also an abstract
class for each kind of widget, and concrete subclasses implement widgets for
specific look-and-feel standards. WidgetFactory’s interface has an operation that
returns a new widget object for each abstract widget class. Clients call these oper-
ations to obtain widget instances, but clients aren’t aware of the concrete classes
they’re using. Thus clients stay independent of the prevailing look and feel.

There is a concrete subclass of WidgetFactory for each look-and-feel standard.
Each subclass implements the operations to create the appropriate widget for the
look and feel. For example, the CreateScrollBar operation on the MotifWidgetFac-
tory instantiates and returns a Motif scroll bar, while the corresponding operation
on the PMWidgetFactory returns a scroll bar for Presentation Manager. Clients
create widgets solely through the WidgetFactory interface and have no knowl-
edge of the classes that implement widgets for a particular look and feel. In other
words, clients only have to commit to an interface defined by an abstract class,
not a particular concrete class.

A WidgetFactory also enforces dependencies between the concrete widget classes.
A Motif scroll bar should be used with a Motif button and a Motif text editor, and
that constraint is enforced automatically as a consequence of using a MotifWid-
getFactory.

WidgetFactory [

CreateScroiiBar()
CreateWindow()

MotifWidgetFactory

1
i

PMWidgetFactory

CreateScroilBarl)
CreateWindow({)

CreateScroliBar()
CreateWindow()

- o mm mm e m m m am

Window [=—

Client

|

-~ -

PMWindow

MotifWindow

S

ScrolfiBar =

A

l

I

PMScrollBar

MotifScrollBar

il = =

Participants
e AbstractFactory (WidgetFactory)

— declares an interface for operations that create abstract product objects.
e ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)

— implements the operations to create concrete product objects.
o AbstractProduct (Window, ScrollBar)

~ declares an interface for a type of product object.
s ConcreteProduct (MotifWindow, MotifScrollBar)

— defines a product object to be created by the corresponding concrete factory.

— implements the AbstractProduct interface.
o Client

— uses only interfaces declared by AbstractFactory and AbstractProduct
classes.

/

Example

The purpose of the Abstract Factory is to provide an interface for creating families of related

objects, without specifying concrete classes. This pattern is found in the sheet metal stamping

equipment used in the manufacture of Japanese automobiles. The stamping equipment is an
Abstract Factory which creates auto body parts. The same machinery is used to stamp right
hand doors, left hand doaors, right front fenders, left front fenders, hoods, etc. for different

models of cars. Through the use of rollers to change the stamping dies, the concrete classes

produced by the machinery can be changed within three minutes.

| Model3Wheels

| Model2Wheels

Model1Wheels

+stampWheel()

N\

StampingEquipment
<2----1 Client {parts list for Model)
+stampPart()
| Model3Hood | Model3Door
| Model2Hood | Model2Door
ModellHood Model1Door
+stampHood() +stampDoor()

s

*** Builder

> Object Creational

Intent

Separate the construction of a complex object from its representation so that the
same construction process can create different representations.

A reader for the RTF (Rich Text Format) document exchange format should be able
to convert RTF to many text formats. The reader might convert RTF documents
into plain ASCII text or into a text widget that can be edited interactively. The
problem, however, is that the number of possible conversions is open-ended. So
it should be easy to add a new conversion without modifying the reader.

A solution is to configure the RTFReader class with a TextConverter object that
converts RTF to another textual representation. As the RTFReader parses the RTF
document, it uses the TextConverter to perform the conversion. Whenever the
RTFReader recognizes an RTF token (either plain text or an RTF control word), it
issues a request to the TextConverter to convert the token. TextConverter objects
are responsible both for performing the data conversion and for representing the
token in a particular format.

RTFReadar

builder
>

B A N T BT 68 i T 0 R PTG O | SR | TS T B w011 T R UL T A 1 S A AP 0 SN T L e

gw}_:usffeﬁei%

ParseRTF() ©

whila E:; g.?t tha{naxt token) {
switch t.
CHAR: yee

builder—>ConvertCharacter(t.Char)

FONT:

builder-»>ConvertFontChange{t Font)

PARA:
huilder->GonvertParagraph()

9

T T

TextConverier

ConvertCharacter{char)

ConvertFantChange(Font)

ConvertParagraphf)

| I |

ASCIlIConverter TeXConverter TextWidgetConverter
ConvertCharacterichar) ConveriCharacter(char) ConvertCharacter(char)
GetASClIText() ConvertFontChange{Font) ConvertFontChange(Font)
'| ConverParagraph() ConvertParagraph()
: GetTeXText) GetTextWidgel()
: : :
i-m ASCliText -~ TeXText - m TextWidget

Participants

e Builder (TextConverter)

- specifies an abstract interface for creating parts of a Product object.

e ConcreteBuilder (ASCIIConverter, TeXConverter, TextWidgetConverter)

— constructs and assembles parts of the product by implementing the Builder
interface.

— defines and keeps track of the representation it creates.

— provides an interface for retrieving the product (e.g., GetASCIlIText, Get-
TextWidget).

¢ Director (RTFReader)
— constructs an object using the Builder interface.
e Product (ASCIIText, TeXText, TextWidget)

— represents the complex object under construction. ConcreteBuilder builds
the product’s internal representation and defines the process by which it’s
assembled.

/

Example

The Builder pattern separates the construction of a complex object from its representation so
that the same construction process can create different representations. This pattern is used by
fast food restaurants to construct children's meals. Children’s meals typically consist of a main
itern, a side item, a drink, and a toy (e.g., a hamburger, fries, Coke, and toy dinosaur). Note that
there can be variation in the content of the children’'s meal, but the construction process is the
same. Whether a customer orders a hamburger, cheeseburger, or chicken, the process is the
same. The employee at the counter directs the crew to assemble a main item, side item, and

toy. These items are then placed in a bag. The drink is placed in a cup and remains outside of

the bag. This same process is used at competing restaurants.

Customer
client

Order kid's meal

Get meal

h

Cashier
director

Restaurant crew
builder

Build s
>

Build lﬂ

Build

Build &

h A

T~ T ——

b J

“* Factory Method

> Class Creational

Intent

Define an interface for creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses.

Also Known As

Virtual Constructor

Frameworks use abstract classes to define and maintain relationships between
objects. A framework is often responsible for creating these objects as well.

Application subclasses redefine an abstract CreateDocument operation on Appli-
cation to return the appropriate Document subclass. Once an Application sub-
class is instantiated, it can then instantiate application-specific Documents with-

out knowing their class. We call CreateDocument a factory method because it’s
responsible for “manufacturing” an object.

| docs

Document” doc = CreateDocument();
docs.Add(doc),
doc—0pen(};

Document Application
Open() CreateDocument()
Close() NewDocument() o-
Save() OpenDocument()
Revert()

A AN
MyDocument (< ------- - MyApplication

CreateDocument() O

i
return new MyDocument

Participants

e Product (Document)

— defines the interface of objects the factory method creates.
¢ ConcreteProduct (MyDocument)

~ implements the Product interface.
e Creator {(Application)

— declares the factory method, which returns an object of type Product. Cre-
ator may also define a default implementation of the factory method that
returns a default ConcreteProduct object.

~ may call the factory method to create a Product object.

o ConcreteCreator (MyApplication)

— overrides the factory method to return an instance of a ConcreteProduct.

i

Example

The Factory Method defines an interface for creating objects, but lets subclasses decide which
classes to instantiate. Injection molding presses demonstrate this pattern. Manufacturers of
plastic toys process plastic molding powder, and inject the plastic into molds of the desired
shapes. The class of toy (car, action figure, etc.) is determined by the mold.

InjectionMold

+inject()

A

ToyDuckMold ToyCarMold

+inject() +inject()

. .

“* Prototype

> Object Creational

Intent

Specify the kinds of objects to create using a prototypical instance, and create new
objects by copying this prototype.

You could build an editor for music scores by customizing a general framework
for graphical editors and adding new objects that represent notes, rests, and
staves. The editor framework may have a palette of tools for adding these music
objects to the score. The palette would also include tools for selecting, moving,
and otherwise manipulating music objects. Users will click on the quarter-note
tool and use it to add quarter notes to the score. Or they can use the move tool to
move a note up or down on the staff, thereby changing its pitch.

So in our music editor, each tool for creating a music object is an instance of
GraphicTool that’s initialized with a different prototype. Each GraphicTool in-
stance will produce a music object by cloning its prototype and adding the clone
to the score.

Toofl = Graphic
Manipulata() Draw(Position)
A Clone()
rototype [|
RotateTool GraphicTool |<>—’ Staff MusicalNote
Manipulate{) Manipulate() Q Draw(Position) A
Corep | /N
= prointmeClonel | WholeNote HalfNote
while {user drags mouse) { Draw(Position) Draw{Position)
p—>Draw(new position) Clone() '? Clone() ?

insert p into drawing

return copy of self%

return copy of self %

Participants
o Prototype (Graphic)

— declares an interface for cloning itself.

o ConcretePrototype (Staff, WholeNote, HalfNote)
— implements an operation for cloning itself.

e Client (GraphicTool)

- creates a new object by asking a prototype to clone itself.

“* Singleton
> Object Creational

Intent

Ensure a class only has one instance, and provide a global point of access to it.

It's important for some classes to have exactly one instance. Although there can be
many printers in a system, there should be only one printer spooler. There should
be only one file system and one window manager. A digital filter will have one
A/D converter. An accounting system will be dedicated to serving one company.

Singleton

static Instance() O --q=<===-~ = ===+ retum uniguelnstance ﬂ
SingletonOperation(}
GetSingletonData()

static uniquelnstance
singletonData

Participants

e Singleton

— defines an Instance operation that lets clients access its unique instance.
Instance is a class operation (that is, a class method in Smalltalk and a static
member function in C++).

— may be responsible for creating its own unique instance.

1

Example

The Singleton pattern ensures that a class has only one instance and provides a global point
of access to that instance. It is named after the singleton set, which is defined to be a set
containing one element. The office of the President of the United States is a 5ingleton. The
United 5tates Constitution specifies the means by which a president is elected, limits the term
of office, and defines the order of succession. As a result, there can be at most one active
president at any given time. Regardless of the personal identity of the active president, the

title, "The President of the United States” is a global point of access that identifies the person
in the office.

Government

+election(): Government

Return unique instance E]

Structural
Patterns

> These design patterns are all about Class and Object composition
> Structural class patterns use inheritance to compose interfaces

> Structural object-patterns define ways to compose objects to obtain

new functionality

Structural

Class

Adapter (class)

Object

Adapter (object)
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

“* Adapter

> Class, Object Structural

Intent

Convert the interface of a class into another interface clients expect. Adapter lets
classes work together that couldn’t otherwise because of incompatible interfaces.

Also Known As
Wrapper

Consider for example a drawing editor that lets users draw and arrange graphical
elements (lines, polygons, text, etc.) into pictures and diagrams. The drawing
editor’s key abstraction is the graphical object, which has an editable shape and
can draw itself. The interface for graphical objects is defined by an abstract class
called Shape. The editor defines a subclass of Shape for each kind of graphical
object: a LineShape class for lines, a PolygonShape class for polygons, and so
forth.

Classes for elementary geometric shapes like LineShape and PolygonShape are
rather easy to implement, because their drawing and editing capabilities are

inherently limited. But a TextShape subclass that can display and edit text is
considerably more difficult to implement, since even basic text editing involves
complicated screen update and buffer management.

Instead, we could define TextShape so that it adapts the TextView interface to
Shape’s. We can do this in one of two ways: (1) by inheriting Shape’s interface
and TextView’s implementation or (2) by composing a TextView instance within
a TextShape and implementing TextShape in terms of TextView's interface. These

twoapproaches correspond to the class and object versions of the Adapter pattern.
We call TextShape an adapter.

DrawingEditor

"JShape

BoundingBox()

CreateManipuiator()

A

Line

BoundingBox(}

CreateManipulator()

TextShape

BoundingBox() o
CreateManipulator() ©-

=

TextView

GetExtent()

return text->GetExtent() %

1 return new TextManipuIatoﬁ

This diagram illustrates the object adapter case. It shows how BoundingBox re-
quests, declared in class Shape, are converted to GetExtent requests defined in
TextView. Since TextShape adapts TextView to the Shape interface, the drawing
editor can reuse the otherwise incompatible TextView class.

A class adapter uses multiple inheritance to adapt one interface to another:

Client

 Target Adaptee
Requasi() SpecificRequest()
(implementation)
Adapter
Request() O-F~---=-=-~-- SpecificRequest() %

An object adapter relies on object composition:

Client

— ™ Target

Requesty()

A

Adapter

— Adaptee

SpecificRequest()

Request() C-

............ adaptee—>SpecificRequest() %

Participants

e Target (Shape)
— defines the domain-specific interface that Client uses.
o Client (DrawingEditor)
— collaborates with objects conforming to the Target interface.
o Adaptee (TextView)
— defines an existing interface that needs adapting.
e Adapter (TextShape)

— adapts the interface of Adaptee to the Target interface.

/

Example

The Adapter pattern allows otherwise incompatible classes to work together by converting the
interface of one class into an interface expected by the clients. Socket wrenches provide an
example of the Adapter. A socket attaches to a ratchet, provided that the size of the drive is the
same. Typical drive sizes in the United States are 1/2"and 1/4". Obviously, a 1/2" drive ratchet
will not fit into a 1/4" drive socket unless an adapter is used. A 1/2"to 1/4" adapter has a 1/2"
female connection to fit on the 1/2" drive ratchet, and a 1/4" male connection to fit in the 1/4"

drive socket.

Ratchet

V" drive (male)

Socket Adapter
- 1 " |
V" drive (female) = 1::'" g:::g Ef;g:l}t%}
@E‘_':' I o Cla

. 000

It is like the problem of inserting a new three-prong electrical plug in an old two-prong wall
outlet - some kind of adapter or intermediary is necessary.

TR EE
LR

Adapter is about creating an intermediary abstraction that translates, or maps, the old
component to the new system. Clients call methods on the Adapter object which redirects

them into calls to the legacy component. This strategy can be implemented either with
inheritance or with aggregation.

“* Bridge

> Object Structural

Intent

Decouple an abstraction from its implementation so that the two can vary inde-
pendently.

Also Known As
Handle/Body

Consider the implementation of a portable Window abstraction in a user interface
toolkit. This abstraction should enable us to write applications that work on both
the X Window System and IBM’s Presentation Manager (PM), for example. Using
inheritance, we could define an abstract class Window and subclasses XWindow
and PMWindow that implement the Window interface for the different platforms.
But this approach has two drawbacks:

1. It's inconvenient to extend the Window abstraction to cover different kinds
of windows or new platforms. Imagine an IconWindow subclass of Window
that specializes the Window abstraction for icons. To support IconWindows
for both platforms, we have to implement two new classes, XIlconWindow
and PMIconWindow. Worse, we’ll have to define two classes for every kind
of window. Supporting a third platform requires yet another new Window
subclass for every kind of window.

window Window

A A

XWindow PMWindow XwWindow PMWindow lconWindow

A

XlconWindow PMiconWindow

2. It makes client code platform-dependent. Whenever a client creates a win-
dow, it instantiates a concrete class that has a specific implementation. For
example, creating an XWindow object binds the Window abstraction to the
X Window implementation, which makes the client code dependent on the
X Window implementation. This, in turn, makes it harder to port the client
code to other platforms.

Clients should be able to create a window without committing to a con-
crete implementation. Only the window implementation should depend on
the platform on which the application runs. Therefore client code should
instantiate windows without mentioning specific platforms.

The Bridge pattern addresses these problems by putting the Window abstraction
and its implementation in separate class hierarchies. There is one class hierarchy
for window interfaces (Window, IconWindow, TransientWindow) and a separate
hierarchy for platform-specific window implementations, with WindowImp as its
root. The XWindowlImp subclass, for example, provides an implementation based
on the X Window System.

Iriclee
i
Window k> P - Windowimp
DrawText() DevDrawText()
DrawRect() O - " DevDrawLine()
' imp—>DevDrawLine
L imp—:-DevDrawLineB
imp—>DevDrawLine
imp—>DevDrawLine
A AN
IconWindow TransientWindow XWindowlmp PMWindowlmp
DrawBorder(} ¢ DrawCloseBox(} Q DevDrawText() O F - DevDrawline(}
, " DevDrawl.ine() ¢ : PevDrawTexi()

DrawRect awRect
DrawTaﬂg ﬂ r 0

!
XDrawLine() ﬁ xnrawsu-Ing{H

Participants
e Abstraction (Window)
— defines the abstraction’s interface.
— maintains a reference to an object of type Implementor.
¢ RefinedAbstraction (IconWindow)
— Extends the interface defined by Abstraction.

¢ Implementor (WindowImp)

- defines the interface for implementation classes. This interface doesn’t
have to correspond exactly to Abstraction’s interface; in fact the two inter-
faces can be quite different. Typically the Implementor interface provides
only primitive operations, and Abstraction defines higher-level operations
based on these primitives.

¢ Concretelmplementor (XWindowlImp, PMWindowImp)

— implements the Implementor interface and defines its concrete implemen-
tation,

Consider the domain of "thread scheduling’.

ThreadScheduler
PreemptiveThreadScheduler TimeSlicedThreadScheduler
I I I I
UnixPTS WindowsPTS UnixTSTS WindowsTSTS

There are two types of thread schedulers, and two types of operating systems or "platforms’.
Given this approach to specialization, we have to define a class for each permutation of these
two dimensions. If we add a new platform (say ... Java’s Virtual Machine), what would our

hierarchy look like?

ThreadShceduler

X
I |
PreemptiveThreadScheduler TimeSlicedThreadScheduler
LN I
UnixPTS WindowsPTS UnixTSTS WindowsTSTS
JVM_PTS JVM_TSTS

What if we had three kinds of thread schedulers, and four kinds of platforms? What if we had
five kinds of thread schedulers, and ten kinds of platforms? The number of classes we would

have to define is the product of the number of scheduling schemes and the number of
platforms.

The Bridge design pattern proposes refactoring this exponentially explosive inheritance
hierarchy into two orthogonal hierarchies — one for platform-independent abstractions, and
the other for platform-dependent implementations.

ThreadScheduler
AN
| ThreadScheduler_Implementation
PreemptiveThreadScheduler ray
TimeSlicedThreadScheduler UnixPTS WindowsPTS

JVM_PTS

/

Example

The Bridge pattern decouples an abstraction from its implementation, so that the two can vary
independently. A household switch controlling lights, ceiling fans, etc. is an example of the

Bridge. The purpose of the switch is to turn a device on or off. The actual switch can be

implemented as a pull chain, simple two position switch, or a variety of dimmer switches.

__

Bridge
Switch Switchimplementation
+ON() +ON({)
+0OFF() +0OFF()
'y

< Composite

> Object Structural

Intent

Compose objects into tree structures to represent part-whole hierarchies. Com-
posite lets clients treat individual objects and compositions of objects uniformly.

Graphics applications like drawing editors and schematic capture systems let
users build complex diagrams out of simple components. The user can group
components to form larger components, which in turn can be grouped to form still
larger components. A simple implementation could define classes for graphical
primitives such as Text and Lines plus other classes that act as containers for these

primitives.

Graphic

o

Draw()
Add{Graphic)

Remoave{Graphic)

GetChild(int)

A

Line Rectangle Text Picture

Draw() Draw() Draw() Draw() ©~=----
Add(Graphic g} ©-
Remove{Graphic)
GetChild(int)

e e e N b e e = =R W

forall g in graphics ﬂ
g.Dra

- - add g to list of graphics q

The key to the Composite pattern is an abstract class that represents both primi-
tives and their containers. For the graphics system, this class is Graphic. Graphic
declares operations like Draw that are specific to graphical objects. It also declares
operations that all composite objects share, such as operations for accessing and
managing its children.

The subclasses Line, Rectangle, and Text (see preceding class diagram) define
primitive graphical objects. These classes implement Draw to draw lines, rectan-
gles, and text, respectively. Since primitive graphics have no child graphics, none
of these subclasses implements child-related operations.

The Picture class defines an aggregate of Graphic objects. Picture implements
Draw to call Draw on its children, and it implements child-related operations ac-
cordingly. Because the Picture interface conforms to the Graphic interface, Picture
objects can compose other Pictures recursively.

The following diagram shows a typical composite object structure of recursively
composed Graphic objects:

Participants
e Component (Graphic)

- declares the interface for objects in the composition.

— implements default behavior for the interface common to all classes, as
appropriate.

— declares an interface for accessing and managing its child components.

— (optional) defines an interface for accessing a component’s parent in the
recursive structure, and implements it if that’s appropriate.

¢ Leaf (Rectangle, Line, Text, etc.)
— represents leaf objects in the composition. A leaf has no children.
- defines behavior for primitive objects in the composition.
e Composite (Picture)
— defines behavior for components having children.
~ stores child components.
- implements child-related operations in the Component interface.
s Client

— manipulates objects in the composition through the Component interface.

1

Example

The Composite composes objects into tree structures and lets clients treat individual objects
and compositions uniformly. Although the example is abstract, arithmetic expressions are
Composites. An arithmetic expression consists of an operand, an operator (+-7 /), and another
operand. The operand can be a number, or another arithmetic expression. Thus,2 + 3 and (2 +
5) + (4 * 6) are both valid expressions.

ArithmeticExpression
=
— ™
+ #)
-
+ +
£ 0 N
N 2 *
| | | /N
3 8
NumericOperand CompositeOperand
s -

e

** Decorator

> Object Structural

Intent

Attach additional responsibilities to an object dynamically. Decorators provide a
flexible alternative to subclassing for extending functionality.

Also Known As
Wrapper

ting and aditing facilities 10 some
extent. However, they invariably
epaeut Saeh CRpcioe s
represent e

50 would Mlexibility
st the fincst in the

application. Text and graphics
could be reated uniformly with

D —

For example, suppose we have a TextView object that displays text in a window.
TextView has no scroll bars by default, because we might not always need them.
When we do, we can use a ScrollDecorator to add them. Suppose we also want to
add a thick black border around the TextView. We can use a BorderDecorator to
add this as well. We simply compose the decorators with the TextView to produce
the desired result.

The following object diagram shows how to compose a TextView object with
BorderDecorator and ScrollDecorator objects to produce a bordered, scrollable
text view:

(aBorderDecorator N

aScrollDecorator '
{_component ®—— aTextView B

component &—— { J

The ScrollDecorator and BorderDecorator classes are subclasses of Decorator, an
abstract class for visual components that decorate other visual components.

VisualComponent [=
Draw()
l | component

TextView Decorator ko

Draw() Draw{) O---q----======--------=--+ component->Draw() ﬁ
ScroliDecorator BorderDecorator
— S — Qe]
ScroliTo() DrawBorder({)
scroliPosition borderWidth

Participants

e Component (VisualComponent)

— defines the interface for objects that can have responsibilities added to
them dynamically.

e ConcreteComponent (TextView)
— defines an object to which additional responsibilities can be attached.
e Decorator

— maintains a reference to a Component object and defines an interface that
conforms to Component’s interface.

e ConcreteDecorator (BorderDecorator, ScrollDecorator)

— adds responsibilities to the component.

Example

The Decorator attaches additional responsibilities to an object dynamically. The ornaments
that are added to pine or fir trees are examples of Decorators. Lights, garland, candy canes,
glass ornaments, etc., can be added to a tree to give it a festive look. The ornaments do not
change the tree itself which is recognizable as a Christmas tree regardless of particular

ornaments used. As an example of additional functionality, the addition of lights allows one to
“light up® a Christmas tree.

/

Another example: assault gun is a deadly weapon on it's own. But you can apply certain

‘decorations” to make it more accurate, silent and devastating.

Weapon

+aim_and_fire()

L

BaseWeapon

+aim_and_fire()

WeaponAccessory

+aim_and_fire()

* Facade

> Object Structural

Intent

Provide a unified interface to a set of interfaces in a subsystem. Facade defines a
higher-level interface that makes the subsystem easier to use.

Structuring a system into subsystems helps reduce complexity. A common design
goal is to minimize the communication and dependencies between subsystems.
One way to achieve this goal is to introduce a facade object that provides a single,
simplified interface to the more general facilities of a subsystem.

client classes

subsystem classes

Compiler

memmmm' T Gnmpi Iei) femer i e s A S R —
3 CEHTHHN : : : ,
T auboysiom . ' P
! orlasses ! | P
H ST 1 i | |
i 1 1 1 1
_f | ' 1 '
i b I 1 1]
5 Stream ; | v -m Scanner |--m» Token [#——— !
: Vo
g]] 1 :
A : : - - = Parser Symbol fe—— !
z I ' L
: i i
2 : 1 i
i 1
—= BytecodeStream | - » ProgramNodeBuilder | - -» ProgramiNode
! i
: i
I
I
! ———- ——-
[
¥
; CodeGenerator |=---' StatementNode
L L /\ ExpressionNode
:
| _
; StackMachineCodeGenerator RISCCodeGenerator VariableNode é
! :
iﬂ-w—b i e B P e e e R R e s e T i R S e i o 2 el e e LR R & “AAC Ak e R UL RN mem\hmj

subsystem clasges

Facade

»

Participants

e Facade (Compiler)
— knows which subsystem classes are responsible for a request.
- delegates client requests to appropriate subsystem objects.

e subsystem classes (Scanner, Parser, ProgramNode, etc.)

- implement subsystem functionality.

-~ handle work assigned by the Facade object.
— have no knowledge of the facade; that is, they keep no references to it.

!

Example

The Facade defines a unified, higher level interface to a subsystem that makes it easier to use.

Consumers encounter a Facade when ordering from a catalog. The consumer calls one number
and speaks with a customer service representative. The customer service representative acts as
a Facade, providing an interface to the order fulfillment department, the billing department,

and the shipping department.

Customer service Facade

-~

!

¥

Crder fullfillment

Billing

e, | -

!

Shipping

“* Flyweight

> Object Structural

Intent
Use sharing to support large numbers of fine-grained objects efficiently.

The following diagram shows how a document editor can use objects to represent
characters.

nnnnn

character

/-""f objects

S
R S G T o
_r

-
‘
L1 L]

-
L1 L

column
y E_/ object

Logically there is an object for every occurrence of a given character in the docu-
ment:

column

Physically, however, there is one shared flyweight object per character, and it
appears in different contexts in the document structure. Each occurrence of a par-
ticular character object refers to the same instance in the shared pool of flyweight
objects:

The class structure for these objects is shown next. Glyph is the abstract class for
graphical objects, some of which may be flyweights. Operations that may depend
on extrinsic state have it passed to them as a parameter. For example, Draw and
Intersects must know which context the glyph is in before they can do their job.

e Glyph loe

Draw(Contexi}
Intersects(Point, Context)

A

Jﬂow | character Column —lo—
children children
Draw{Contaxt) Craw({Context) Drawi{Context}
Intersects(Point, Context) Intersects(Point, Context) Intersects(Point, Context)

charc

Participants
e Flyweight (Glyph)

— declares an interface through which flyweights can receive and act on
extrinsic state.

e ConcreteFlyweight (Character)

— implements the Flyweight interface and adds storage for intrinsic state,
if any. A ConcreteFlyweight object must be sharable. Any state it stores
must be intrinsic; that is, it must be independent of the ConcreteFlyweight
object’s context.

e UnsharedConcreteFlyweight (Row, Column)

— not all Flyweight subclasses need to be shared. The Flyweight interface
enables sharing; it doesn’t enforce it. It’s common for UnsharedConcrete-
Flyweight objects to have ConcreteFlyweight objects as children at some
level in the flyweight object structure (as the Row and Column classes
have).

FlyweightFactory

— creates and manages flyweight objects.

— ensures that flyweights are shared properly. When a client requests a fly-
weight, the FlyweightFactory object supplies an existing instance or creates
one, if none exists.

Client

— maintains a reference to flyweight(s).

~ computes or stores the extrinsic state of flyweight(s).

s |

Example

The Flyweight uses sharing to support large numbers of objects efficiently. Modern web
browsers use this technique to prevent loading same images twice. When browser loads a web
page, it traverse through all images on that page. Browser loads all new images from Internet
and places them the internal cache. For already loaded images, a flyweight object is created,
which has some unique data like position within the page, but everything else is referenced to

the cached one.

Browser loads images

just once and then e
reuses them from pool:)
I
I
[]
I
o [
N] -

“* Proxy

> Object Structural

Intent

Provide a surrogate or placeholder for another object to control access to it.

Also Known As
Surrogate

The solution is to use another object, an image proxy, that acts as a stand-in for
the real image. The proxy acts just like the image and takes care of instantiating it
when it’s required.

Y

S W ——

| I ‘— on disk 4'

in memory

The image proxy creates the real image only when the document editor asks it
to display itself by invoking its Draw operation. The proxy forwards subsequent
requests directly to the image. It must therefore keep a reference to the image after
creating it.

The following class diagram illustrates this example in more detail.

DocumentEditor - Graphic
Draw()
GetExtant()
Store()
Load()
Image = |4 -------. ImageProxy
Draw() Image| praw() o
GetExtent() GetExtent() O
Store() Storel)
Load() Load()
imagelmp fileMame
extent extant

if (image == 0} { =
image = Loadimage(fileName);

image->Draw()

if (image == 0} { s
return extent;
} else {

raturn image->GetExtent();

The document editor accesses embedded images through the interface defined by

= the abstract Graphic class. ImageProxy is a class for images that are created on
demand. ImageProxy maintains the file name as a reference to the image on disk.
The file name is passed as an argument to the ImageProxy constructor.

Participants
e Proxy (ImageProxy)

-~ maintains a reference that lets the proxy access the real subject. Proxy may
refer to a Subject if the RealSubject and Subject interfaces are the same.

— provides an interface identical to Subject’s so that a proxy can by substi-
tuted for the real subject.

~ controls access to the real subject and may be responsible for creating and
deleting it.

e Subject (Graphic)

— defines the common interface for RealSubject and Proxy so that a Proxy
can be used anywhere a RealSubject is expected.

e RealSubject (Image)
— defines the real object that the proxy represents.

Example

The Proxy provides a surrogate or place holder to provide access to an object. A check or bank
draft is a proxy for funds in an account. A check can be used in place of cash for making
purchases and ultimately controls access to cash in the issuer’s account.

Payment

+amaounti()

p

Real subject

A

n

CheckProxy

FundsPaidFromAccount

e

Behavioral
Patterns

> Behavioral patterns are concerned with algorithms and the assignment of

responsibilities between objects

> Behavioral patterns describe not just patterns of objects or classesbut also

the patterns of communication between them

> Behavioral class patterns use inheritance to distribute behavior between

classes

> Behavioral object patterns use object composition rather than inheritance

Behavioral

Class

Interpreter
lTemplate Method

Object

Chain of Responsibility
Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

“* Chain of Responsibility

> Object Behavioral

Intent

Avoid coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request. Chain the receiving objects and pass the
request along the chain until an object handles it.

Consider a context-sensitive help facility for a graphical user interface. The user
can obtain help information on any part of the interface just by clicking on it.
The help that’s provided depends on the part of the interface that’s selected and
its context; for example, a button widget in a dialog box might have different
help information than a similar button in the main window. If no specific help
information exists for that part of the interface, then the help system should
display a more general help message about the immediate context—the dialog
box as a whole, for example.

The idea of this pattern is to decouple senders and receivers by giving multiple
objects a chance to handle a request. The request gets passed along a chain of
objects until one of them handles it.

|' aSaveDialog)

(aPrintButton \ @Lb\-(annppllcaﬂan]

khandler &J__(Mhandlar
aPrintDialog
handler v"’j

(anOKButton

L handler -«)

~

The first object in the chain receives the request and either handles it or forwards
it to the next candidate on the chain, which does likewise. The object that made
the request has no explicit knowledge of who will handle it—we say the request
has an implicit receiver.

Let’s assume the user clicks for help on a button widget marked “Print.” The
button is contained in an instance of PrintDialog, which knows the application
object it belongs to (see preceding object diagram). The following interaction
diagram illustrates how the help request gets forwarded along the chain:

aPrintButton aPrintDialog anApplication

l

J

In this case, neither aPrintButton nor aPrintDialog handles the request; it stops at
anApplication, which can handle it or ignore it. The client that issued the request
has no direct reference to the object that ultimately fulfills it.

For example, the help system might define
a HelpHandler class with a corresponding HandleHelp operation. HelpHandler
can be the parent class for candidate object classes, or it can be defined as a mixin
class. Then classes that want to handle help requests can make HelpHandler a
parent:

handler

HelpHandler
— | HandieHelp() of----- hanmer_:-HandlaHalp:ﬁ
Application Widget
if can handle {
Dialog Button ShowHelp()
} else {
HandleHelp(} ©f---- Handier::HandleHelp({}
ShowHelp() }

The Button, Dialog, and Application classes use HelpHandler operations to handle
help requests. HelpHandler’s HandleHelp operation forwards the request to the
successor by default. Subclasses can override this operation to provide help under
the right circumstances; otherwise they can use the default implementation to
forward the request.

SUCCEessor

Chent » Handier
HandleRequest()
l |
ConcreteHandler1 ConcreteHandler2
HandleRequest() HandleRequest()

A typical object structure might look like this:

ﬁt‘:oncmtaﬂnndhr\‘
aHandier ®—— { aConcreteHandier
| successor ® -

(_successor)

Participants
e Handler (HelpHandler)

— defines an interface for handling requests.

— (optional) implements the successor link.

e ConcreteHandler (PrintButton, PrintDialog)
- handles requests it is responsible for.
— can access its successor.

— if the ConcreteHandler can handle the request, it does so; otherwise it
forwards the request to its successor.

e Client

- initiates the request to a ConcreteHandler object on the chain.

Example

The Chain of Responsibility pattern avoids coupling the sender of a request to the receiver by
giving more than one object a chance to handle the request. ATM use the Chain of

Responsibility in money giving mechanism.

** Command

> Object Behavioral

Intent

Encapsulate a request as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable operations.

Also Known As

Action, Transaction

Sometimes it's necessary to issue requests to objects without knowing anything
about the operation being requested or the receiver of the request. For example,
user interface toolkits include objects like buttons and menus that carry out a
request in response to user input. But the toolkit can’t implement the request
explicitly in the button or menu, because only applications that use the toolkit
know what should be done on which object. As toolkit designers we have no way
of knowing the receiver of the request or the operations that will carry it out.

Application F—"-’—-‘J Menu Menultem k> = Command
command

Add(Document) Q_Ljddmemlmm} Clicked() ¢ Execute()
Document T A Tt

command->Execute()} % \
Open)

Close()
Cut()

Copy()
Paste()

~

Menus can be implemented easily with Command objects. Each choice in a Menu
is an instance of a Menultem class. An Application class creates these menus and

their menu items along with the rest of the user interface. The Application class
also keeps track of Document objects that a user has opened.

The application configures each Menultem with an instance of a concrete Com-
mand subclass. When the user selects a Menultem, the Menultem calls Execute
on its command, and Execute carries out the operation. Menultems don’t know
which subclass of Command they use. Command subclasses store the receiver of
the request and invoke one or more operations on the receiver.

For example, PasteCommand supports pasting text from the clipboard into a
Document. PasteCommand’s receiver is the Document object it is supplied upon
instantiation. The Execute operation invokes Paste on the receiving Document.

Command
Exscute()
Document A
Openy) == ===
Close() document
gut{]) - PasteCommand
opy
Paste() Execute(} O------9-------- document->Paste() ﬁ

OpenCommand’s Execute operation is different: it prompts the user for a docu-
ment name, creates a corresponding Document object, adds the document to the
receiving application, and opens the document.

Application ,
il
Add(Document) application | _Pencommand
Execute() ¢
AskUser() !

name = AskUser() j
doc = new Dommentgnama)

application->Add(doc
doc->0Open()

Participants

e Command
— declares an interface for executing an operation.
¢ ConcreteCommand (PasteCommand, OpenCommand)
- defines a binding between a Receiver object and an action.

- implements Execute by invoking the corresponding operation(s) on Re-
ceiver.

e Client (Application)
— creates a ConcreteCommand object and sets its receiver.
e Invoker (Menultem)

— asks the command to carry out the request.

1

Example

The Command pattern allows requests to be encapsulated as objects, thereby allowing clients
to be parametrized with different requests. The ‘check” at a diner is an example of a Command
pattern. The waiter or waitress takes an order or command from a customer and encapsulates
that order by writing it on the check. The order is then queued for a short order cook. Note that
the pad of ‘checks™ used by each waiter is not dependent on the menu, and therefore they can

support commands to cook many different items.

Customer
client

Order()

Waiter
director

Cook
receiver

Order
command
FlaceQrder()

I:]r‘der

Chicken salad Cooki}
F'-lﬂh:
Tce ten
Cheese cake

R~ -y

“* Interpreter

> Class Behavioral

Intent

Given a language, define a represention for its grammar along with an interpreter
that uses the representation to interpret sentences in the language.

The Interpreter pattern describes how to define a grammar for simple languages,
represent sentences in the language, and interpret these sentences. In this example,
the pattern describes how to define a grammar for regular expressions, represent
a particular regular expression, and how to interpret that regular expression.

Suppose the following grammar defines the regular expressions:

expression ::= literal | alternation | seguence | repetition |
*{' expression ')’

alternation ::= expression ‘|’ expression

sequence ::= expression ‘&’ expression

repetition ::= expression "*'

literal ::= 'a’ | 'b" | "¢’ | ... { ra" | 'b" | e | ... }*

The symbol expression is the start symbol, and 1iteral is a terminal symbol
defining simple words

RegularExpression [,
» Interpret() :
LiteralExpression SequenceExpression ‘cﬂxnmssTom
{}Expressmnz
Interpret() Interpret()
literal
repetilion f ponetitionExpression | | AlternationExpression o2 oratvel

¢a|lernatlh‘92

Interpret() Interpret()

Every regular expression defined by this grammar is represented by an abstract
syntax tree made up of instances of these classes. For example, the abstract syntax

tree
iBﬂMHﬂHIﬂI‘I h
expressioni ®—
k_ﬁ!pr'&&siﬂﬂﬂ])

—

(aLiteralExpression)| (‘aRepetitionExpression

k‘ra.ining') Epaat * J

l

(mAﬂemaﬂnnE:prmhnﬁ
Laltemntiam *-—
alternation2 f Y,

(aLiteralexpression | [‘aLiteralExpression |

 dogs’) eats)

= represents the regular expression

raining & (dogs | cats)| *

——= Context

Client

= AbstractExpression [#=
Interpret{Context)

A

Terminal Expression NonterminalExpression]r-:::-'—

Interpret{Context) Interpret{Context)

Participants
o AbstractExpression (RegularExpression)

— declares an abstract Interpret operation that is common to all nodes in the
abstract syntax tree.

¢ TerminalExpression (LiteralExpression)

— 1mplements an Interpret operation associated with terminal symbols in the
granunar.

- an instance is required for every terminal symbol in a sentence.

¢ NonterminalExpression (AlternationExpression, RepetitionExpression, Se-
quenceExpressions)

- one such class is required for every rule R ::= R1 R; ... R,, in the grammar.

- maintains instance variables of type AbstractExpression for each of the
symbols R, through R,,.

- implements an Interpret operation for nonterminal symbols in the gram-

mar. Interpret typically calls itself recursively on the variables representing
R, through R,.

¢ Context
— contains information that’s global to the interpreter.
e Client

~ builds (or is given) an abstract syntax tree representing a particular sen-
tence in the language that the grammar defines. The abstract syntax tree is
assembled from instances of the NonterminalExpression and TerminalEx-
pression classes.

— invokes the Interpret operation.

/

Example

The Interpreter pattern defines a grammatical representation for a language and an interpreter
to interpret the grammar. Musicians are examples of Interpreters. The pitch of a3 sound and its
duration can be represented in musical notation on a staff. This notation provides the
language of music. Musicians playing the music from the score are able to reproduce the

original pitch and duration of each sound represented.
TN

Musical notation
(AbstraciExpression)

SEEELENTS br==0¢

MNotes Signatures
i TerminalExpression)

** Iterator

> Object Behavioral

Intent

Provide a way to access the elements of an aggregate object sequentially without
exposing its underlying representation.

Also Known As
Cursor

The key idea in this pattern is to take the
responsibility for access and traversal out of the list object and putitinto an iterator
object. The Iterator class defines an interface for accessing the list’s elements. An
iterator object is responsible for keeping track of the current element; that is, it
knows which elements have been traversed already.

For example, a List class would call for a ListIterator with the following relation-
ship between them:

list

List - Listiterator

Count() First()

Append(Element) Next(}

Remove(Element) isDone()

Currentitem()
index

Before you can instantiate ListIterator, you must supply the List to traverse. Once
you have the Listlterator instance, you can access the list’s elements sequentially.
_ The Currentltem operation returns the current element in the list, First initializes
" the current element to the first element, Next advances the current element to
the next element, and IsDone tests whether we’ve advanced beyond the last

element—that is, we're finished with the traversal.

Aggregate s BN 43 PO -
Createlteratorf)

)

ConcreteAggregate

=1 Herator

First()

Next()
IsDone()
Currentltemy)

2

Createlterator() ¢

return new Guncreteltsrator(mis)ﬂ

Concretelterator

Participants

e [terator

- defines an interface for accessing and traversing elements.
e Concretelterator

- implements the Iterator interface.

~ keeps track of the current position in the traversal of the aggregate.
¢ Aggregate

— defines an interface for creating an [terator object.

e ConcreteAggregate

— implements the Iterator creation interface to return an instance of the
proper Concretelterator.

"

On early television sets, a dial was used to change channels. When channel surfing, the viewer
was required to move the dial through each channel position, regardless of whether or not
that channel had reception. On modern television sets, a next and previous button are used.
When the viewer selects the "next” button, the next tuned channel will be displayed. Consider
watching television in a hotel room in a strange city. When surfing through channels, the
channel number is not important, but the programming is. If the programming on one channel
is not of interest, the viewer can request the next channel, without knowing its number.

ChannelFrequencies Channellterator
+methodOfTraversal() +nextl)
+previous()

|

TunedChannel

T
E TR ~| ChannelSelector

+methodOfTraversal()

T ——

** Mediator

> Object Behavioral

Intent

Define an object that encapsulates how a set of objects interact. Mediator promotes
loose coupling by keeping objects from referring to each other explicitly, and it
lets you vary their interaction independently.

In Unix, permission to access system resources is managed at three levels of granularity: world,
group, and owner. A group is a collection of users intended to model some functional
affiliation. Each user on the system can be a member of one or more groups, and each group
can have zero or more users assigned to it. Next figure shows three users that are assigned to
all three groups.

Jack
e ADM
Larry
DEV
Alex ROOT

\ If we were to model this in software, we could decide to have User objects coupled to Group
objects, and Group objects coupled to User objects. Then when changes occur, both classes and

all their instances would be affected.

M., T

n

An alternate approach would be to introduce "an additional level of indirection”- take the
mapping of users to groups and groups to users, and make it an abstraction unto itself. This
offers several advantages: Users and Groups are decoupled from one another, many mappings
can easily be maintained and manipulated simultaneously, and the mapping abstraction can be
extended in the future by defining derived classes.

R)
£ 5o >o

ADM
Users to
groups
mapping
DEV
hlex ROOT

|

A mediator is responsible for controlling and coordinating the
interactions of a group of objects. The mediator serves as an intermediary that
keeps objects in the group from referring to each other explicitly. The objects only
know the mediator, thereby reducing the number of interconnections.

For example, FontDialogDirector can be the mediator between the widgets in
a dialog box| A FontDialogDirector object knows the widgets in a dialog and
coordinates their interaction. It acts as a hub of communication for widgets:

' allstBox '|

(aClient) l\- directar
director
aFontDialogDirector y#—————
k- P
| B
aButton R l—
| director = ‘
" anEntryField)
_® director)

Here’s how the FontDialogDirector abstraction can be integrated into a class
library:

DialogDirector - director | widget
ShowDialog() Changed() ©1~---~" diractm—:-Wndgathangad(misH
CreateWidgels()
WidgetChanged(Widget) l
JAY
ListBox EntryFleld

list
FontDialogDirector ——» GetSelection() |-> SetText()

CreateWidgets() fieid
WidgetChanged(Widget)

Participants
e Mediator (DialogDirector)

- defines an interface for communicating with Colleague objects.
e ConcreteMediator (FontDialogDirector)
— implements cooperative behavior by coordinating Colleague objects.
— knows and maintains its colleagues.
e Colleague classes (ListBox, EntryField)
- each Colleague class knows its Mediator object.

- each colleague communicates with its mediator whenever it would have
otherwise communicated with another colleague.

Example

The Mediator defines an object that controls how a set of objects interact. Loose coupling
between colleague objects is achieved by having colleagues communicate with the Mediator,
rather than with each other. The control tower at a controlled airport demonstrates this
pattern very well. The pilots of the planes approaching or departing the terminal area
communicate with the tower rather than explicitly communicating with one another. The
constraints on who can take off or land are enforced by the tower. It is important to note that
the tower does not control the whole flight. It exists only to enforce constraints in the terminal

dred.

ATC Mediator

** Memento

> Object Behavioral

Intent

Without violating encapsulation, capture and externalize an object’s internal state
so that the object can be restored to this state later.

Also Known As
Token

Consider for example a graphical editor that supports connectivity between ob-
jects. A user can connect two rectangles with a line, and the rectangles stay con-
nected when the user moves either of them. The editor ensures that the line
stretches to maintain the connection.

£.d

A well-known way to maintain connectivity relationships between objects is with
a constraint-solving system. We can encapsulate this functionality in a Constraint-
Solver object. ConstraintSolver records connections as they are made and gener-
ates mathematical equations that describe them. It solves these equations when-
ever the user makes a connection or otherwise modifies the diagram. Constraint-
- Solver uses the results of its calculations to rearrange the graphics so that they
maintain the proper connections.

However, this does not guarantee all objects
will appear where they did before. Suppose there is some slack in the connec-
tion. In that case, simply moving the rectangle back to its original location won't
necessarily achieve the desired effect.

]

We can solve this problem with the Memento pattern. A memento is an object
that stores a snapshot of the internal state of another object—the memento’s
originator. The undo mechanism will request a memento from the originator
when it needs to checkpoint the originator’s state. The originator initializes the
memento with information that characterizes its current state. Only the originator
can store and retrieve information from the memento—the memento is “opaque”
to other objects.

In the graphical editor example just discussed, the ConstraintSolver can act as an
originator.

Originator | _________ o Memento [mement<¢::7| Caretaker
SetMemento(Memento m) ¢ GetState{)

CreateMemento() ¢ : SetState()

state E state

state = m-:-GetStale{}q

return new Memento(state)

Participants

e Memento (SolverState)

— stores internal state of the Originator object. The memento may store as
much or as little of the originator’s internal state as necessary at its origi-
nator’s discretion.

— protects against access by objects other than the originator. Mementos
have effectively two interfaces. Caretaker sees a narrow interface to the
Memento—it can only pass the memento to other objects. Originator, in
contrast, sees a wide interface, one that lets it access all the data necessary to
restore itself to its previous state. Ideally, only the originator that produced
the memento would be permitted to access the memento’s internal state.

e Originator (ConstraintSolver)
— creates a memento containing a snapshot of its current internal state.
- uses the memento to restore its internal state.

e Caretaker (undo mechanism)
— is responsible for the memento’s safekeeping.

— never operates on or examines the contents of a memento.

/

Example

The Memento captures and externalizes an object’s internal state so that the object can later
be restored to that state. This pattern is common among do-it-yourself mechanics repairing
drum brakes on their cars. The drums are removed from both sides, exposing both the right
and left brakes. Only one side is disassembled and the other serves as a Memento of how the
brake parts fit together. Only after the job has been completed on one side is the other side
disassembled. When the second side is disassembled, the first side acts as the Memento.

Mechanic

+removeOppositeBrakeDrumi)

1
_ Leave intact until brakes
return brakeRefersnce; . .)
on Sidel are completed

R~ -y

** Observer

> Object Behavioral

Intent

Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

Also Known As
Dependents, Publish-Subscribe

Both a spreadsheet object and bar
chart object can depict information in the same application data object using
different presentations. The spreadsheet and the bar chart don’t know about each
other, thereby letting you reuse only the one you need. But they behave as though
they do. When the user changes the information in the spreadsheet, the bar chart

reflects the changes immediately, and vice versa.

observers
[Talblc]
{x]|60] 30|10
y| 50| 30|20
(2] 80]10[10 .
a €
-
~ I
- |
\\ \ /{
oy I P
- i
- /
\\ {/
a=50% —— change notification
b= 30%
Cc = 20% — ——— MBQuests, modifications

subject

The Observer pattern describes how to establish these relationships. The key
objects in this pattern are subject and observer. A subject may have any number
of dependent observers. All observers are notified whenever the subject undergoes
a change in state. In response, each observer will query the subject to synchronize
its state with the subject’s state.

This kind of interaction is also known as publish-subscribe. The subject is the
publisher of notifications. It sends out these notifications without having to know
who its observers are. Any number of observers can subscribe to receive notifica-
tions.

Subject observers =o Observer
Attach(Observer) Update()
De@ch{ﬂbsawer) for all o in observers {
Notify() o-----1 -- | o—>Update() A

A ConcreteObserver

subject o- -} - | observerState =

ConcreteSubject | Update() subject—>GetState(}
g:ttgtt:::{{]) R return sub]actmatﬁ observerState
subjeciState

Participants

e Subject
— knows its observers. Any number of Observer objects may observe a sub-
ject.
~ provides an interface for attaching and detaching Observer objects.
e Observer

— defines an updating interface for objects that should be notified of changes
in a subject.

e ConcreteSubject

— stores state of interest to ConcreteObserver objects.

— sends a notification to its observers when its state changes.
e ConcreteObserver

— maintains a reference to a ConcreteSubject object.

— stores state that should stay consistent with the subject’s.

— implements the Observer updating interface to keep its state consistent
with the subject’s.

Example

The Observer defines a one-to-many relationship so that when one object changes state, the
others are notified and updated automatically. Some auctions demonstrate this pattern. Each
bidder possesses a numbered paddle that is used to indicate a bid. The auctioneer starts the
bidding, and "observes” when a paddle is raised to accept the bid. The acceptance of the bid
changes the bid price which is broadcast to all of the bidders in the form of a new bid.

Auctioneer
Subject

1. Accept bid
2.

®{oi
& Q4

Eroadecast new high bid

/

% State

> Object Behavioral

Intent

Allow an object to alter its behavior when its internal state changes. The object
will appear to change its class.

Also Known As
Objects for States

Consider a class TCPConnection that represents a network connection. A TCP-
Connection object can be in one of several different states: Established, Listening,
Closed. When a TCPConnection object receives requests from other objects, it
responds differently depending on its current state. For example, the effect of an
Open request depends on whether the connection is in its Closed state or its Estab-
lished state. The State pattern describes how TCPConnection can exhibit different
behavior in each state.

The key idea in this paitern is to introduce an abstract class called TCPState
to represent the states of the network connection. The TCPState class declares
an interface common to all classes that represent different operational states.
Subclasses of TCPState implement state-specificbehavior. For example, the classes
TCPEstablished and TCPClosed implementbehavior particular to the Established
and Closed states of TCPConnection.

state

TCPConnection ks g TCPState

Open() O------ : Open)

Close() - Close()

Acknowledge() E Acknowledge()

state—}Open{}ﬁ

TCPEstablished TCPListen TCPClosed
Open() Open{} Open()
Close() Close() Close()
Acknowledge() Acknowledge() Acknowledge()

The class TCPConnection maintains a state object (an instance of a subclass of
TCPState) that represents the current state of the TCP connection. The class

Participants

o Context (TCPConnection)
— defines the interface of interest to clients.

— maintains an instance of a ConcreteState subclass that defines the current
state.

e State (TCPState)

— defines an interface for encapsulating the behavior associated with a par-
ticular state of the Context.

e ConcreteState subclasses (TCPEstablished, TCPListen, TCPClosed)

— each subclass implements a behavior associated with a state of the Context.

Example

The 5State pattern allows an object to change its behavior when its internal state changes. This
pattern can be observed in a vending machine. Vending machines have states based on the

inventory, amount of currency deposited, the ability to make change, the item selected, etc.

When currency is deposited and a selection is made, a vending machine will either deliver a

product and no change, deliver a product and change, deliver no product due to insufficient

currency on deposit, or deliver no product due to inventory depletion.

VendingMachineState

¢
W

i

VendingDepositeState

VendingStockState

“* Strategy

> Object Behavioral

Intent

Define a family of algorithms, encapsulate each one, and make them interchange-
able. Strategy lets the algorithm vary independently from clients that use it.

Also Known As
Policy

Composition bmm positor = Compositor

Traverse() Compose()
Repair() Q A

SimpleCompositor TeXCompositor ArrayCompositor

Compose() Compose() Compose()

cnmpnsitnr—:CmnposeH

Suppose a Composition class is responsible for maintaining and updating the
linebreaks of text displayed in a text viewer. Linebreaking strategies aren’t im-
plemented by the class Composition. Instead, they are implemented separately
by subclasses of the abstract Compositor class. Compositor subclasses implement
different strategies:

e SimpleCompositor implements a simple strategy that determines linebreaks
one at a time.

¢ TeXCompositor implements the TgX algorithm for finding linebreaks. This
strategy tries to optimize linebreaks globally, that is, one paragraph at a time.

e ArrayCompositor implements a strategy that selects breaks so that each row
has a fixed number of items. It’s useful for breaking a collection of icons into
rows, for example.

Participants

e Strategy (Compositor)

— declares an interface common to all supported algorithms. Context uses
this interface to call the algorithm defined by a ConcreteStrategy.

e ConcreteStrategy (SimpleCompositor, TeXCompositor, ArrayCompositor)
— implements the algorithm using the Strategy interface.

e Context (Composition)
— is configured with a ConcreteStrategy object.
- maintains a reference to a Strategy object.

- may define an interface that lets Strategy access its data.

Example

A Strategy defines a set of algorithms that can be used interchangeably. Modes of
transportation to an airport is an example of a Strategy. Several options exist such as driving
one's own car, taking a taxi, an airport shuttle, a city bus, or a limousine service. For some
airports, subways and helicopters are also available as a mode of transportation to the airport.
Any of these modes of transportation will get a traveler to the airport, and they can be used
interchangeably. The traveler must choose the Strategy based on trade-offs between cost,

convenience, and time.

TransportationToAirport

/

Strategy

City bus Personal car Taxi

Concrete strategies (options)

“* Template Method

> Class Behavioral

Intent

Define the skeleton of an algorithm in an operation, deferring some steps to
subclasses. Template Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure.

Applications built with the framework can subclass Application and Document to
suit specific needs. For example, a drawing application defines DrawApplication
and DrawDocument subclasses; a spreadsheet application defines Spreadsheet-
Application and SpreadsheetDocument subclasses.

docs

Document I'-ll < Application
Savel() AddDocumenty()
Open() OpenDocument()
Close() DoCreateDocument()
DoReady) CanCpenDocument()
A AboutToOpenDocument[)
MyDocument |- ---------1 MyApplication
DoRead() DoCreateDocument() ©-

CanOpenDocument()
AboutToOpenDaocument()

return new MyDocurment ﬁ

" The abstract Application class defines the algorithm for opening and reading a
document in its OpenDocument operation:

Participants
e AbstractClass (Application)

- defines abstract primitive operations that concrete subclasses define to
implement steps of an algorithm.

— implements a template method defining the skeleton of an algorithm. The
template method calls primitive operations as well as operations defined
in AbstractClass or those of other objects.

e ConcreteClass (MyApplication)

- implements the primitive operations to carry out subclass-specific steps of
the algorithm.

Another example: daily routine of a worker.

Worker
: : All workers have
+DailyRoutine() ~ [-------7 the same daily routine.
+getUpl)
+eatBreakiast()
+goToWork()
+Wwarkl)
+returnToHaome()
+relax()
+sleep() Sub-classes override
existing methods of the
template class.
FireFighter Lumberjack Postman Manager
+work() +work() +work() +work() !
+relax()
5 T P

** Visitor

> Object Behavioral

Intent

Represent an operation to be performed on the elements of an object structure. Vis-
itor lets you define a new operation without changing the classes of the elements
on which it operates.

Node

TypeCheck()

GenerateCode()

PrettyPrint()
VariableRefNode AssignmentNode
TypeCheck() TypeCheck(}
GenerateCode() GenerateCode()
PrettyPrint() PrettyPrint()

This diagram shows part of the Node class hierarchy. The problem here is that
distributing all these operations across the various node classes leads to a system
that’s hard to understand, maintain, and change. It will be confusing to have type-
checking code mixed with pretty-printing code or flow analysis code. Moreover,
adding a new operation usually requires recompiling all of these classes. It would

- be better if each new operation could be added separately, and the node classes
were independent of the operations that apply to them.

We can have both by packaging related operations from each class in a separate
object, called a visitor, and passing it to elements of the abstract syntax tree as it’s
traversed. When an element “accepts” the visitor, it sends a request to the visitor
that encodes the element’s class. It also includes the element as an argument. The
visitor will then execute the operation for that element—-the operation that used
to be in the class of the element.

NodeVisHor

VisitAssignment(AssignmertNode)
VisitVariableRef(VariableRefNode)

A\
TypeCheckingVisitor CodeGeneratingVisitor
VisitAssignment(AssignmentMode) VisitAssignment{AssignmeantNoda)
VisitVariableRef(VariableRefNode) VisitvariableRef(VariableRefNode)

Progrgm O—DJ Node

Accept(NodeVisitor)

AssignmentNode VariableRefNode

Accept(NodeVisitor v) ? Accept{NodeVisitor v) ?
' i
1]

v—:—\fisitﬁussignmanl(mis]q v—:rVisitVariabtaFlaﬂthis}q

With the Visitor pattern, you define two class hierarchies: one for the elements
being operated on (the Node hierarchy) and one for the visitors that define op-
erations on the elements (the NodeVisitor hierarchy). You create a new operation
by adding a new subclass to the visitor class hierarchy. As long as the grammar
that the compiler accepts doesn’t change (that is, we don’t have to add new Node
subclasses), we can add new functionality simply by defining new NodeVisitor
subclasses.

0 Ly

VisitConcreteElementA{ConcreleElementA)
VisitConcreteElementB{ConcreteElementB)

A

ConcreteVisitor1

ConcreteVisitor2

VisitConcrateElementA{ConcreteElementA)
VisitConcreteElementB{ConcrateElementB)

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcrateElementE)

| ObjectStructure »o Element

Accept{Visitor)

A

v-:-ViEitGﬂnGrEteElﬁmﬂﬂb’tﬂhiE}ﬁ

ConcreteElementA ConcreteElementB
Accept(Visitor v) @ Accept{Visitor v) Q
OperationA() j

1

OperalionB() ;

I v-nviaitcunwamEbamanIEfmiai@

Participants

e Visitor (NodeVisitor)

— declares a Visit operation for each class of ConcreteElement in the object
structure. The operation’s name and signature identifies the class that sends
the Visit request to the visitor. That lets the visitor determine the concrete
class of the element being visited. Then the visitor can access the element
directly through its particular interface.

¢ ConcreteVisitor (TypeCheckingVisitor)

~ implements each operation declared by Visitor. Each operation implements
a fragment of the algorithm defined for the corresponding class of object
in the structure. ConcreteVisitor provides the context for the algorithm
and stores its local state. This state often accumulates results during the
traversal of the structure.

e Element (Node)

~ defines an Accept operation that takes a visitor as an argument.
e ConcreteElement (AssignmentNode,VariableRefNode)

— implements an Accept operation that takes a visitor as an argument.
s ObjectStructure (Program)

— can enumerate its elements.

—~ may provide a high-level interface to allow the visitor to visit its elements.

— may either be a composite (see Composite (163)) or a collection such as a
list or a set.

/

Example

The Visitor pattern represents an operation to be performed on the elements of an object
structure without changing the classes on which it operates. This pattern can be observed in
the operation of a taxi company. When a person calls a taxi company (accepting a visitor), the
company dispatches a cab to the customer. Upon entering the taxi the customer, or Visitor, is
no longer in control of his or her own transportation, the taxi (driver) is.

--‘;-
Cab company
dispatcher Customer Taxi
Object structure is Concrete element of Visitor
list of Customers Customers list
SendCabi)
(AcceptAVisitor)
Enter{Cahb)
>
(VisitCustomer)

Transport{Customer)

Concept of
Anti-patterns

1

/1

Design pattemns |

Problem

[Context & forces]

N, o=

/@‘n\n S _
Benefits Ems&ma CRS

Related solutions

AntiPatterns

Context & causes

N

ol o - - AntPattern solution

[Eymplnms & mnsaquartﬂa]

N

Refractored solution

Benefits oNSequences
Y
Related solutions

AntiPattern Examples

What is an AntiPattern (and why should I care)?

® AntiPatterns are Megadive Solutions
that present more problem s than they

address

® AntiFatterns are a natural extension to
design patterns

® AntiPatterns bridge the gap between
architectural concepts and real-worl d
impl ementati ons.

® Tnderstanding AntiPatterns prowvides

the knowledze to prevent or recover
trom them

Why Study AntiPatterns?

& AntiPattems are a method of efficiently
mapping a general situation to a spedfic
class of solutions.

& AntiPatterns provide real world eXperience in
recognizing recurring problems in the
software industry, providing a detailed
remedy for the most common predicaments.

e AntiPattems provide a common vocahulary

for identifying problems and discussing
solutions.

& AntiPattern supporn the holistic resolution of
conflicts wtilizing organiz ational resources at
several levels, where possible.

& AntiPatterns provide stress release in the
form of shared misery for the most common
pitfalls in the software industrny.

AntiPatterns, like their design pattern counterparts, define an industry
vocabulary for the common defective processes and implementations

within organizations

A higher-level vocabulary simplifies communication between software

practitioners and enables concise description of higher-level concepts

Describes a commonly occurring solution to a problem that generates

decidedly negative consequences

The AntiPattern may be the result of a manager or developer not
knowing any better, not having sufficient knowledge or experience in
solving a particular type of problem, or having applied a perfectly good

{gm 1n the wrong context

Recognizing recurring problems in the software industry
Provide a detailed remedy for the most common predicaments

Highlight the most common problems that face the software industry and
provide the tools to enable you to recognize these problems and to

determine their underlying causes
Implementing productive solutions
Improve the developing of applications, the designing of software systems

Effective management of software projects

J Software Development AntiPatterns

> A key goal of development AntiPatterns is to describe useful forms of

software refactoring

> Software refactoring is a form of code modification, used to improve the

software structure in support of subsequent extension and long-term

maintenance

J Software Architecture AntiPatterns

> Architecture AntiPatterns focus on the system-level and enterprise-

level structure of applications and components

J Project Management AntiPatterns

> In the modern engineering profession, more than half of the job

involves human communication and resolving people 1ssues

> The management AntiPatterns identify some of the key scenarios in

which these 1ssues are destructive to software processes

